
1© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

BLACKMAMBA: AI-SYNTHESIZED,
POLYMORPHIC KEYLOGGER
WITH ON-THE-FLY PROGRAM
MODIFICATION

There is no doubt about it, endpoint detection and response (EDR), protective DNS,

and other automated security controls are critical components in any modern security

stack. Technologies like EDR leverage multi-layer, data intelligence systems to combat

some of today’s most sophisticated threats. But while most automated controls claim

to prevent novel or irregular behavior patterns, in practice, this is very rarely the case.

A threat actor can combine a series of typically highly detectable behaviors in an

unusual combination and evade detection by exploiting the model’s inability to

recognize it as a malicious pattern. This problem is compounded when artificial

intelligence is at the helm and driving cyberattacks, as the methods it chooses may be

highly atypical compared to those used by human threat actor counterparts.

Furthermore, the speed at which these attacks can be executed makes the threat

exponentially worse.

In this paper, my goal is to highlight the very real and present danger created by the

emergence of sophisticated data intelligence systems, such as large language models

(LLM). To illustrate this point, I have built a simple proof of concept (PoC) exploiting a

large language model to synthesize polymorphic keylogger functionality on-the-fly,

dynamically modifying the benign code at runtime — all without any command-and-

control infrastructure to deliver or verify the malicious keylogger functionality. This

technique runs completely unimpeded by EDR intervention. Given the significant

threat posed by the methodology, I call this PoC BlackMamba, a reference to the

extremely venomous snake of the same name.

2© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

THE FUTURE: AI-AUGMENTED CYBER ATTACK

My curiosity piqued, I ravenously devoured two academic papers [1] [2] on AI-augmented

cyberattack, and came away knowing this was a field of research I wanted to fully immerse

myself in. The authors did a wonderful job expounding the various theoretical attack

vectors that could be possible, leveraging state-of-the-art machine learning and artificial

intelligence within offensive tradecraft practices and malware. As my eyes darted across

the words on the screen, I began to form an idea for an offensive synergy that would unite

two seemingly disparate concepts contained within the research. The first concept was to

eliminate the command and control (C2) channel using malware that could be equipped

with intelligent automation and could push-back any attacker-bound data through some

benign communication channel [2]. The second was to leverage AI code generative

techniques that could synthesize new malware variants, changing the code such that it can

evade detection algorithms [2].

These two seemingly disconnected ideas struck me like a 16th-century war hammer:

polymorphic malware which synthesizes its malicious functionality from a (highly reputable)

large language model’s API, eliminating the need for a payload delivery infrastructure and

then modifying the legitimate portion of the program (on-the-fly) with the malicious

functionality. I wanted to develop a keylogger (BlackMamba) which would run undetected

by EDR and which would make network analysis a little more tricky. For a keylogger to be

effective, I would also need an exfiltration channel which would run Ninja, so I opted for a

web hook to Teams to allow me to push stolen data back into the channel. Eager to test

out my newly perceived knowledge-bomb and after reading a great blog on the rise of

Pythonic malware [3], I decided to create BlackMamba in Python and also decided that I

would not use obfuscation in this PoC. I wanted to see what a fundamental shift in

malware design would do to the detection model of an EDR and its ability to detect

uncommon vectors such as this.

1. https://www.tandfonline.com/doi/epdf/10.1080/08839514.2022.2037254?needAccess=true&role=button

2. https://www.researchgate.net/profile/Thanh-Cong-Truong/publication/338099216_A_Survey_on_Artificial_Intelligence_in_Malware_as_
Next-Generation_Threats/links/5e046214299bf10bc3797646/A-Survey-on-Artificial-Intelligence-in-Malware-as-Next-Generation-Threats.
pdf?origin=publication_detail

3. https://www.cyborgsecurity.com/cyborg-labs/python-malware-on-the-rise

https://www.tandfonline.com/doi/epdf/10.1080/08839514.2022.2037254?needAccess=true&role=button
https://www.researchgate.net/profile/Thanh-Cong-Truong/publication/338099216_A_Survey_on_Artificial_Intelligence_in_Malware_as_Next-Generation_Threats/links/5e046214299bf10bc3797646/A-Survey-on-Artificial-Intelligence-in-Malware-as-Next-Generation-Threats.pdf?origin=publication_detail
https://www.researchgate.net/profile/Thanh-Cong-Truong/publication/338099216_A_Survey_on_Artificial_Intelligence_in_Malware_as_Next-Generation_Threats/links/5e046214299bf10bc3797646/A-Survey-on-Artificial-Intelligence-in-Malware-as-Next-Generation-Threats.pdf?origin=publication_detail
https://www.researchgate.net/profile/Thanh-Cong-Truong/publication/338099216_A_Survey_on_Artificial_Intelligence_in_Malware_as_Next-Generation_Threats/links/5e046214299bf10bc3797646/A-Survey-on-Artificial-Intelligence-in-Malware-as-Next-Generation-Threats.pdf?origin=publication_detail
https://www.cyborgsecurity.com/cyborg-labs/python-malware-on-the-rise

3© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

Figure 1: a visualization of the HYAS datalake

BLACKMAMBA RESEARCH COMPONENTS

Essentially, BlackMamba comprises two main components. The first is a benign,

Python-compiled, executable consisting of two functions and a few imports. The second

part is a polymorphic payload that is generated and executed at runtime,

consisting of the malicious keylogging functionality. I’m going to walk through the

research that makes up BlackMamba as follows:

1. Neural Network Code Synthesis & Malware Polymorphism

2.Malicious Prompt Engineering

3. Python’s exec() Function: On-the-Fly Program Modification

4. Malicious Communications Over Trusted Channels

5. Compiling Python Malware into Standalone, Executable
Code

4© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

NEURAL NETWORK CODE SYNTHESIS &
MALWARE POLYMORPHISM

When ChatGPT exploded onto the scene late

last year, it marked the first time neural network

code synthesis was made freely available to the

masses. In brief terms, ChatGPT is a

transformer-based LLM capable of synthesizing

language and source code. A transformer

model is a type of neural network architecture

that is commonly used for natural language

processing tasks, such as language translation,

text classification, and text generation.

To synthesize code using a transformer model,

the model is first trained on a large dataset of

source code examples. During training, the

model learns to identify patterns and

relationships between different parts of the

code. Once the model is trained, it can

generate new code based on a prompt or input

code by taking in a prompt or input code and generating a prediction for what

the next piece of code should be. This awesome functionality is what makes the

polymorphism magic possible within BlackMamba.

Malware polymorphism is a technique used by bad actors to evade detection by

security software and make their malware more difficult to detect and analyze.

Polymorphic malware works by changing its own code in a way that preserves its

functionality while making it harder to identify. This typically involves changing its

file signature or name, the way it is packed or encrypted, and even the way it

behaves at runtime. BlackMamba utilizes a benign executable that reaches out to

a high-reputation API (OpenAI) at runtime so it can return synthesized, malicious

code needed to steal an infected user’s keystrokes. It then executes the

dynamically generated code within the context of the benign program using

Python’s exec() function, with the malicious polymorphic portion remaining totally

in-memory. Every time BlackMamba executes, it re-synthesizes its keylogging

capability, making the malicious component of this malware truly polymorphic.

BlackMamba was tested against an industry leading EDR which will remain

nameless, many times, resulting in zero alerts or detections. At this point, enter

malicious prompt engineering.

AI-Synthesized, Polymorphic Keylogger BlackMamba in action (EDR protected endpoint):

5© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

MALICIOUS PROMPT ENGINEERING

Before we chat (no pun intended) about malicious prompt engineering, we should

define what prompt engineering actually is. In the context of large language models

like GPT-3, prompt engineering refers to the process of crafting specific input text

prompts to generate desired outputs. These prompts serve as the initial input to the

model, providing context and cues for the model to generate a response. The idea

behind prompt engineering is that by carefully crafting prompts that provide the

necessary context and cues, one can steer the model's outputs in a particular

direction or achieve a specific result.

Debugging code, which is generated through prompt engineering, specifically fixing

the bugs once located can be challenging in dynamically generated code. The

lynchpin to all the AI-polymorphism magic is that the synthesized code actually

needs to work – and this can be a significant challenge. Researchers from

CYBERARK proposed a process which communicates back to the C2 channel to

validate the newly synthesized code and if the checks pass, execute it [5]. This

seems like a reasonable solution, but this would not work for one of my key

objectives, the elimination of the command and control channel. I decided to tackle

this problem by tightening up my prompting game, causing the synthesized code

to be less defective. Moreover, I added a crude way (BlackMamba is still only a PoC,

after all) for the main program to verify whether data is going out on the exfiltration

channel (Teams) and if not, reruns the function responsible for code generation. To

be useful, the code that is synthesized needs to work the majority of the time and

on the first attempt.

“From a cyber security perspective, the study of large language models,
the content they can generate, and the prompts required to generate that
content is important (…). Such research provides us with visibility into what
is and what is not possible with current tools and allows the community to
be alerted to the potential misuses of such technologies [4].”

4. https://labs.withsecure.com/content/dam/labs/docs/WithSecure-Creatively-malicious-prompt-engineering.pdf

5. https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware

https://labs.withsecure.com/content/dam/labs/docs/WithSecure-Creatively-malicious-prompt-engineering.pdf
https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware

Prompting code:

6© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

The first part of the prompt addresses the content filters, or lack thereof, in the API

for which may or may not be present in the near future. I’ve circumvented the UI-

based filters with a similar approach; reasoning malicious intention via legitimate

occupational need. Next, I needed to constrain the possible libraries used to generate

keylogging functionality as any included imports ChatGPT saw fit to import, needed

to be compiled into the benign executable, ahead of time. Python’s exec()

function allows access to declared global variables within the dynamically

generated code, executed within its functionality. This was a great way to pass the

collected keystroke data to the exfiltration function, without the creation of any

files. The majority of failed synthesized code was due to the function not

returning after the allotted keylogging interval, causing the program to wait for

the code executed by exec(), indefinitely.

Through a rigorous process of trial and error, I developed some linguistic prompts

with limited code snippets to direct the model’s outputs. I instructed the model to

choose keyboard.on_press() in the program instead of keyboard.read_key() – I

actually had to reiterate this in the prompt as I found doing so, had a higher success

rate for not getting returned code with keyboard.read_key() and ultimately hanging

the program. Similarly, I had to specifically instruct chatGPT that if the program does

use keyboard.on_press(), not to use the registration within the loop as to avoid

capturing duplicate keystrokes. In the end, what I noticed was less of a tightly coupled

effect of cause and effect with my prompting and more of a general push in the right

direction to return more reliable code. Lastly, it might behoove the malware author

to encrypt the prompt strings as inspecting them may be a dead giveaway of

malicious intent.

Main part of the program which generates a polymorphic payload & executes it:

7© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

PYTHON’S EXEC() FUNCTION: ON-THE-FLY
PROGRAM MODIFICATION

Python's exec() function is a built-in feature that allows you to dynamically execute Python

code at runtime. It takes a string containing the code you want to execute as input, and

then it executes that code. The exec() function is commonly used for on-the-fly program

modification, which means that you can modify the behavior of a running program by

executing new code while the program is running. Exploiting this powerful functionality,

malware authors can use it to execute malicious code on a victim's computer. Here are a

few ways this could happen:

1. Dynamic code injection: Malware authors could use the exec() function to inject malicious

code into a legitimate program that’s already running on the victim’s computer. This

could be done by modifying a script or configuration file that the legitimate program

reads at runtime, and then using exec() to execute the modified code.

2. Obfuscation: Malware authors could use the exec() function to obfuscate their code by

storing it in a multi-line string and then executing it with exec(). This can lower automated

detection rates if the malicious code is stored in a separate text file and read into the

function (one of my early tests to evade EDR before going fileless).

3. Code obtained remotely and executed: Malware authors could use the exec() function

to execute remote code on the victim’s computer. This could be done by retrieving the

code from a remote server (API) or website and then executing it using exec().

8© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

This attack technique is especially dangerous because of how difficult it can be to detect and

prevent. MS Teams is a legitimate communication and collaboration tool that is widely used by

organizations, so malware authors can leverage it to bypass traditional security defenses,

such as firewalls and intrusion detection systems. Also, since the data is sent over encrypted

channels, it can be difficult to detect that the channel is being used for exfiltration.

BlackMamba Teams channel exfil:

MALICIOUS COMMUNICATIONS OVER TRUSTED
CHANNELS

MS Teams, like other communication and collaboration tools, can be exploited by malware

authors as an exfiltration channel. In this context, an exfiltration channel refers to the

method by which an attacker removes or extracts data from a compromised system and

sends it to an external location, such as an attacker-controlled Teams channel via webhook.

BlackMamba can collect sensitive information, such as usernames, passwords, credit card

numbers, and other personal or confidential data that a user types into their device. Once

this data is captured, the malware uses MS Teams webhook to send the collected data to

the malicious Teams channel, where it can be analyzed, sold on the dark web, or used for

other nefarious purposes.

MS Teams exfil function:

9© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification HYAS.COM

COMPILING PYTHON MALWARE INTO STANDALONE,
EXECUTABLE CODE

Auto-py-to-exe is an open-source Python

package that allows developers to convert

their Python scripts into standalone

executable files that can be run on

Windows, macOS, and Linux operating

systems. While this package is intended for

legitimate use cases, it can also be used by

malware authors to package their Python-

based malware into executable files that

can be distributed and run on a target

system without the need for Python to be

installed.

When using auto-py-to-exe, the malware author first writes their Python-based malware

code and imports any necessary libraries or modules. They then use the auto-py-to-exe

package to generate an executable file from their Python code. This process involves

selecting the desired output format and configuration options, such as specifying the

target operating system and architecture, the icon to use for the executable file, and any

additional data files or resources to include in the package.

Once the executable file is generated, the malware author can distribute it to potential

targets via links in email, social engineering schemes, and other typical methods to

potential targets. When the victim runs the executable file, the malware is executed on

their system, and can perform various malicious actions, such as stealing sensitive

information, modifying system settings, or downloading additional malware — in our case,

keylogging.

The use of auto-py-to-exe to compile Python-based malware into standalone executable

files poses a significant threat to organizations and individuals, as it can make it easier for

malware authors to distribute and run their malware on target systems without the need

for the Python interpreter to be installed. Moreover, in the context of AI-augmented

cyberattack, utilizing standalone, pythonic malware provides access to a rich data

intelligence ecosystem of libraries and developer support for all kinds of data science

applications.

Auto-py-to-exe GUI:

10HYAS.COM© 2023 | BlackMamba: AI-Synthesized, Polymorphic Keylogger with On-the-Fly Program Modification

ABOUT HYAS

LOOKING AHEAD

While endpoint detection and response (EDR) and other automated

security controls are essential components of a modern security stack,

they are not foolproof. Threat actors can combine normally highly

detectable behaviors in an unusual combination to evade detection,

especially when artificial intelligence is driving cyberattacks. With the

emergence of sophisticated data intelligence systems like LLMs, the risks

become even more severe. The BlackMamba proof-of-concept shows

that LLMs can be exploited to synthesize polymorphic keylogger

functionality on-the-fly, making it difficult for EDR to intervene. As the

cybersecurity landscape continues to evolve, it is crucial for organizations

to remain vigilant, keep their security measures up to date, and adapt to

new threats that emerge by operationalizing cutting-edge research being

conducted in this space.

HYAS is a valued partner and world-leading authority on cyber adversary infrastructure

and communication to that infrastructure. We help businesses see more, do more,

and understand more about the nature of the threats they face, or don’t even realize

they are facing, on a daily basis. Our vision is to be the leading provider of confidence

and cybersecurity that today’s businesses need to move forward in an ever-changing

data environment.

© 2021 HYAS InfoSec Inc. All Rights Reserved. HYAS and the HYAS logo

are trademarks owned by HYAS InfoSec Inc.

FOR MORE:

info@hyas.com

hyas.com

